2 00 7 Local structure of the moduli space of K 3 surfaces over finite characteristic ∗ † Jeng -

نویسنده

  • Jeng-Daw Yu
چکیده

Let k be a perfect field of characteristic p ≥ 3. Let X be a non-supersingular K3 surface over k, and Ψ the enlarged formal Brauer group associated to X . We consider the deformation space of X . In this note, we show that the local moduli space M◦◦ of X with trivial associated deformation of Ψ admits a natural p-divisible formal group structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formal Brauer groups and the moduli of abelian surfaces

Let X be an algebraic surface over an algebraically closed field k of characteristic p > 0. We denote by ΦX the formal Brauer group of X and by h = h(ΦX) the height of ΦX . In a previous paper, [6], we examined the structure of the stratification given by the height h in the moduli space of K3 surfaces, and we determined the cohomology class of each stratum. In this paper, we apply the methods ...

متن کامل

ar X iv : 0 70 9 . 19 79 v 3 [ m at h . A G ] 1 4 O ct 2 00 7 K 3 Surfaces of Finite Height over Finite Fields ∗ †

Arithmetic of K3 surfaces defined over finite fields are investigated. In particular, we show that any K3 surface X of finite height over a finite field k of characteristic p ≥ 5 has a quasi-canonical lifting Z to characteristic 0, and that for any such Z, the endormorphism algebra of the transcendental cycles V (Z), as a Hodge module, is a CM field over Q. We illustrate by examples how to dete...

متن کامل

m at h . A G ] 1 M ay 2 00 8 K 3 Surfaces of Finite Height over Finite Fields ∗ †

Arithmetic of K3 surfaces defined over finite fields is investigated. In particular, we show that any K3 surface X of finite height over a finite field k of characteristic p ≥ 5 has a quasi-canonical lifting Z to characteristic 0, and that for any such Z, the endormorphism algebra of the transcendental cycles V (Z), as a Hodge module, is a CM field over Q. The Tate conjecture for the product of...

متن کامل

Conformal Structures and Necksizes of Embedded Constant Mean Curvature Surfaces

Let M = Mg,k denote the space of properly (Alexandrov) embedded constant mean curvature (CMC) surfaces of genus g with k (labeled) ends, modulo rigid motions, endowed with the real analytic structure described in [15]. Let P = Pg,k = Rg,k × R+ be the space of parabolic structures over Riemann surfaces of genus g with k (marked) punctures, the real analytic structure coming from the 3g− 3+ k loc...

متن کامل

J un 2 00 5 Euler Characteristics of Moduli Spaces of Curves ∗

Let Mng be the moduli space of n-pointed Riemann surfaces of genus g. Denote by M n g the Deligne-Mumford compactification of Mng . In the present paper, we calculate the orbifold and the ordinary Euler characteristic of M n g for any g and n such that n > 2− 2g.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007